Subscribe

RSS Feed (xml)

Powered By

Skin Design: Kisi Karunia
Base Code: Free Blogger Skins

Powered by Blogger

Saturday, 29 November 2025

Gen Z Wajib Tahu! Tazkiyatun Nafs yang Bisa Bikin Hidup Auto Tenang & Rezeki Makin Lancar!

 


Tazkiyatun Nafs: Upgrade Hati, Upgrade Hidup — Kajian Ringan untuk Gen Z

 

Bismillahirrahmanirrahim.


Segala puji bagi Allah SWT, Tuhan seluruh alam. Shalawat dan salam semoga selalu tercurah untuk Nabi Muhammad SAW—role model terbaik sepanjang masa.

 

Mukadimah: Hati Kita Butuh “Maintenance”, Gen Z!


Hai Sobat Gen Z

Pernah nggak sih merasa hidup itu penuh distraksi? Dari notifikasi HP, trending topic, sampai overthinking tentang masa depan. Di tengah semua itu, ada satu hal penting yang sering lupa kita rawat: hati.

Allah SWT memerintahkan kita untuk mensucikan jiwa, membersihkan hati dari “debu-debu” yang bikin hidup berat—entah itu iri, insecure, pesimis, atau terlalu bergantung pada penilaian manusia. Semua nabi diutus untuk ini: membantu manusia punya hati yang bersih, kuat, dan hidup.

Nah, kajian Tazkiyatun Nafs ini adalah semacam “emotional & spiritual detox” versi syar’i, disusun dari karya Syaikh Dr. Muhammad Said Bakr. Kita bahas dengan gaya Gen Z, biar lebih nyambung dan mudah diresapi.

 

KAIDAH UTAMA:


“Percaya Penuh Sama Janji dan Peringatan Allah — Jangan Nggak Fokus!”

Allah janji banyak hal ke orang beriman: pertolongan, jalan keluar, ketenangan, rezeki, sampai surga. Itu bukan “quotes motivasi”—itu janji dari Pemilik seluruh alam. Keyakinan ini harusnya jadi booster buat kita berbuat baik, stay istiqamah, dan jauhi maksiat.

Sebaliknya, ancaman Allah juga nyata. Bukan untuk nakut-nakutin, tapi buat ngejaga kita biar nggak kebablasan. Kalau kita mulai ragu sama janji dan ancaman Allah, hati bakal makin keras. Lama-lama, hal makruh dianggap biasa, syubhat jadi “gak apa-apa,” yang haram pun bisa jadi candu.

Upgrade iman itu dimulai dari percaya penuh sama Allah.

 

Kenapa Kita Lebih Percaya Janji Manusia daripada Janji Allah?


Jujur aja, kalau ada orang kaya atau terkenal janji sesuatu, hati kita langsung berbunga-bunga.
Sebaliknya, kalau orang toxic ngancam, kita langsung down.

Padahal… semua ini muncul karena hati yang belum sehat total.

Hati yang bersih nggak gampang ke-PHP sama janji manusia. Kenapa?

Karena dia yakin banget:

“Apa yang ada di sisi Allah jauh lebih baik dan lebih kekal.”

Kalau manusia nggak bisa menepati janji? Ya wajar, mereka cuma makhluk.
Kalau ada yang ngancam? Hati yang bersih mikirnya: “Allah-lah Pelindungku”.

Allah sendiri bilang:

Tidak akan menimpa kami apa pun kecuali yang Allah tetapkan.” (QS. At-Taubah: 51)

Ini bukan sekadar ayat—ini mindset hidup.

 

Pelajaran Super Berharga dari Nasehat Nabi kepada Ibnu Abbas


Bayangin kamu lagi boncengan sama Rasulullah SAW, lalu beliau kasih nasihat pribadi, khusus buatmu. Itu yang dialami Ibnu Abbas RA ketika masih remaja—seumuran Gen Z!


Nabi SAW bilang:

“Jagalah Allah, pasti Allah menjagamu.

Jika kamu meminta, mintalah kepada Allah.

Jika kamu butuh pertolongan, mintalah kepada Allah.

Ingatlah, kalau seluruh manusia ingin menolongmu, mereka nggak bisa kecuali apa yang Allah tetapkan.

Dan kalau mereka mau mencelakaimu, mereka juga nggak bisa kecuali apa yang Allah tetapkan.

Pena-pena sudah diangkat dan catatan telah kering.”

(HR. Tirmidzi)

 

Mindblowing banget.

Ini kayak reminder bahwa hidupmu nggak dikendalikan manusia, tapi oleh Rabb yang Maha Penyayang.

 

Perintah dan Larangan Allah: Bukan Batasan, Tapi Bentuk Sayang


Nabi SAW bersabda:

Apa yang aku larang, jauhilah. Apa yang aku perintahkan, lakukan sesuai kemampuanmu.” (HR. Bukhari & Muslim)

Di antara alasan kenapa larangan dan perintah ini penting:

  1. Karena makin banyak orang yang nekat melanggar batas.
  2. Karena larangan itu sedikit, tapi efeknya besar.
  3. Karena pelanggarannya punya dampak serius untuk hati dan kehidupan.

Allah berfirman:

“Barang siapa melanggar hukum-hukum Allah, ia telah menzalimi dirinya sendiri.” (QS. At-Thalaq: 1)

Kadang kita mikir “Ah, cuma sedikit,” tapi setiap dosa itu kayak goresan kecil yang akhirnya bisa bikin hati rusak total kalau dibiarkan.

 

Penutup: Saatnya Jaga Hati, Jaga Langkah


Sobat Gen Z...

Dunia hari ini penuh distraksi. Tapi justru di tengah hiruk-pikuk itu, Allah memanggil kita untuk kembali membersihkan jiwa. Biar hati kita nggak kusam, biar hidup terasa lebih ringan, dan biar langkah kita makin dekat menuju ridha-Nya.

Fa’taabiruu yaa Ulil Abshaar.

Ambillah pelajaran, wahai kalian yang hatinya masih ingin melihat kebenaran.

 

DAFTAR PUSTAKA

  1. Al-Qur’an al-Karim.
  2. Bakr, Muhammad Said. Tashfiyatun Nafs ‘an Syawa’ibihā.
  3. Al-Bukhari, Muhammad bin Ismail. Shahih al-Bukhari.
  4. Muslim bin al-Hajjaj. Shahih Muslim.
  5. At-Tirmidzi, Muhammad bin Isa. Sunan at-Tirmidzi.
  6. Ibn Rajab al-Hanbali. Jami’ al-‘Ulum wal-Hikam.
  7. Al-Ghazali, Abu Hamid. Ihya’ ‘Ulumiddin.

#TazkiyatunNafs 

#GenZHijrah 

#UpgradeHati 

#KajianIslami 

#RenunganHarian


Friday, 28 November 2025

A Flu Virus That Kills Pancreatic Cancer? The Breakthrough Scientists Are Calling a Game-Changer

 

Oncolytic Influenza A Virus as an Emerging Therapeutic Modality for Pancreatic Cancer: A Narrative Review


Pudjiatmoko

Member of the Nanotechnology Technical Committee, National Standardization Agency, Indonesia

 

Abstract

 

Pancreatic ductal adenocarcinoma (PDAC) remains one of the most lethal malignancies, characterized by aggressive biological behavior, profound desmoplasia, and resistance to almost all existing therapeutic modalities. Oncolytic viruses (OVs) have emerged as a promising class of immunotherapeutic agents capable of inducing selective tumor cell lysis while simultaneously activating antitumor immunity. Among the various OV platforms, engineered influenza A viruses—including strains derived from avian influenza H5—have gained increasing attention due to their natural tropism, genetic flexibility, and strong capacity to stimulate innate immune pathways. This review synthesizes the historical foundations, mechanistic insights, preclinical evidence, and translational challenges of influenza A–based oncolytic virotherapy for pancreatic cancer. Existing studies show that influenza A viruses can directly lyse PDAC cells (Kasloff et al., 2014) and can be engineered to express immunomodulatory payloads, including cytokines and immune checkpoint inhibitors (van Rikxoort et al., 2012; Lei, G. et al, 2023). Recent advances have elucidated the role of cGAS–STING signaling and enhanced cytotoxic lymphocyte infiltration in mediating influenza-based antitumor effects. Despite compelling preclinical data, no influenza-derived OV has yet entered clinical trials for PDAC. Further research is required to optimize tumor selectivity, improve delivery strategies, and overcome stromal and immunologic barriers. This review highlights current progress and proposes future directions to facilitate the translation of influenza-based virotherapy into clinical applications for PDAC.

Keywords: Pancreatic ductal adenocarcinoma; oncolytic viruses; influenza A–based virotherapy; H5 avian influenza; antitumor immunity; cGAS–STING pathway; tumor microenvironment; immunomodulatory payloads; preclinical oncology.

 

1. Introduction

 

Pancreatic ductal adenocarcinoma accounts for over 90% of pancreatic cancer cases and continues to exhibit mortality rates among the highest of all cancers, with a 5-year survival rate remaining below 10%. Its lethality is attributed to late clinical presentation, extensive desmoplastic stroma, profound immunosuppression, and resistance to chemotherapy, radiotherapy, and most immunotherapies (Hamidi-Sofiani et al., 2022; Achim et al., 2025). In response to these challenges, oncolytic viruses have emerged as a distinctive therapeutic modality that combines direct tumor cell lysis with robust immune activation (Lin et al., 2023).


While several OV platforms—such as adenovirus, vesicular stomatitis virus, herpes simplex virus, and vaccinia virus—are undergoing active clinical development, a growing body of evidence suggests that influenza A viruses hold unique advantages. Engineered influenza strains, including those derived from avian influenza H5N1, possess a segmented genome that facilitates genetic manipulation, can potently activate innate immunity, and may be redirected toward tumor tissue (van Rikxoort et al., 2012; Donelan & NCI, 2016).


This review provides a comprehensive narrative synthesis of the historical development, mechanistic rationale, preclinical evidence, and translational opportunities associated with influenza A–based oncolytic virotherapy for pancreatic cancer.

 

2. Methods

 

This narrative review was conducted using peer-reviewed literature published between 2012 and 2025. Searches were performed in PubMed, Scopus, and Web of Science using the terms oncolytic influenza virus, H5N1 engineered virus, influenza virotherapy, and pancreatic ductal adenocarcinoma. Key historical studies published prior to 2020 were included to ensure adequate background contextualization, while publications from 2020–2025 were prioritized to reflect contemporary knowledge and translational developments. Only literature indexed in major scholarly databases and publicly archived was included. All references follow APA citation style.

 

3. Historical Development of Influenza A as an Oncolytic Virus

 

Early observations of respiratory viral infections demonstrated that certain viruses could induce cytopathic effects in malignant cells. These findings laid the conceptual foundation for exploring influenza viruses as potential oncolytic agents. The development of reverse genetics techniques enabled precise engineering of influenza A viruses, including the integration of immunostimulatory genes. A landmark study by van Rikxoort et al. (2012) demonstrated that insertion of interleukin-15 (IL-15) into the NS reading frame increased antitumor immune activation, solidifying the feasibility of arming influenza A with therapeutic payloads.


The National Cancer Institute formally defined an “oncolytic influenza A virus” as a genetically engineered influenza virus capable of selectively infecting and destroying cancer cells (Donelan & NCI, 2016), recognizing its potential as a distinct OV platform. The first major evidence of influenza A’s direct oncolytic activity against PDAC was provided by Kasloff et al. (2014), who demonstrated infection, replication, and tumor growth inhibition in human PDAC xenografts. This study established the rationale for further exploring influenza-based OVs as candidate therapeutics for pancreatic cancer.

 

4. Mechanisms of Action of Influenza-Based Oncolytic Virotherapy

 

4.1 Selective Infection and Lysis of Tumor Cells

Influenza A virus tropism is largely determined by sialic acid receptor specificity. Human PDAC cells express both α2,3- and α2,6-linked sialic acids, which facilitate efficient viral entry (Kasloff et al., 2014). Following infection, the influenza virus undergoes replication and induces lytic cell death, leading to reduced tumor viability. This direct cytopathic effect represents a foundational mechanism of influenza-based OV therapy.


4.2 Induction of Innate Immune Responses

Influenza A viruses robustly activate pattern-recognition receptors, including RIG-I, TLR7, and the cGAS–STING pathway. Activation of these sensors results in the release of type I interferons, chemokines, and inflammatory cytokines that collectively enhance antitumor immunity (Lei, G. et al, 2023). This innate signaling may help counteract the profoundly immunosuppressive microenvironment characteristic of PDAC.


4.3 Activation of Adaptive Antitumor Immunity

Engineered influenza A viruses enhance adaptive immune responses through activation of dendritic cells, increased antigen presentation, and expansion of cytotoxic CD8+ T lymphocytes. Recent studies show that influenza-based OVs engineered to express PD-L1–neutralizing antibodies enhance T-cell infiltration and reverse T-cell exhaustion (Lei, G. et al, 2023). These findings suggest that influenza-derived OVs can potentiate antitumor immunity through coordinated innate and adaptive mechanisms.


4.4 Delivery of Immunomodulatory Payloads

Advances in genetic engineering have enabled influenza A viruses to deliver biologically active therapeutic molecules. These include IL-15 (van Rikxoort et al., 2012), anti–PD-1 or anti–PD-L1 antibodies (Lei, G. et al., 2022), and GM-CSF (Reddy et al., 2024). Such payloads further amplify antitumor immune responses and may synergize with existing immunotherapies.

 

5. Preclinical Evidence in Pancreatic Cancer

 

5.1 Direct Evidence from PDAC Models

The study by Kasloff et al. (2014) remains the principal direct investigation demonstrating that avian influenza A can infect human PDAC cells, replicate efficiently, induce apoptosis, and inhibit tumor growth in xenograft models. Although limited, this foundational evidence confirms that PDAC is permissive to influenza-based OV therapy.

 

5.2 Mechanistically Relevant Studies in Other Solid Tumors (2020–2025)

Since influenza OVs for PDAC are still emerging, supporting mechanistic insights derive from preclinical studies in hepatocellular carcinoma, colorectal cancer, and other solid tumors. These include demonstrations that influenza A viruses expressing PD-L1 antibodies enhance CD8+ T-cell activation via cGAS–STING signaling (Lei, G. et al, 2023), and that anti–PD-1-armed influenza viruses suppress tumor progression and extend survival (Lei, G. et al., 2022). Collectively, these findings provide strong mechanistic support for application in PDAC.

 

5.3 Relevance to the Immunobiology of PDAC

The fibrotic and immunosuppressive microenvironment of PDAC poses substantial barriers to effective immunotherapy. Influenza-based OVs exhibit properties that may overcome these barriers by inducing inflammatory remodeling (Esteves et al., 2025), promoting immunogenic tumor cell death, and enhancing responsiveness to checkpoint blockade therapies (Achim et al., 2025). Accordingly, although direct PDAC studies remain limited, the mechanistic congruence is compelling.

 

6. Combination Strategies for Enhanced Efficacy

 

6.1 Combination with Immune Checkpoint Inhibitors

Influenza A viruses engineered to express anti–PD-1 or anti–PD-L1 antibodies demonstrate superior antitumor efficacy compared with monotherapy (Lei, G. et al., 2022), highlighting the potential for integrated immunomodulation.


6.2 Combination with Cytokine Engineering

Arming influenza A viruses with IL-15 promotes activation of NK cells and CD8+ T cells (van Rikxoort et al., 2012), an advantage particularly relevant for PDAC, which exhibits suppressed NK-cell activity.

 

6.3 Combination with Stromal Modulation Strategies

The dense desmoplastic stroma of PDAC limits viral dissemination. Potential synergistic approaches include co-administration of TGF-β inhibitors, hyaluronidase, or CXCR4 antagonists, which may enhance viral penetration and promote microenvironmental remodeling (Rivers-Orellana et al., 2025).

 

7. Challenges and Limitations

 

7.1 Biosafety and Risk of Pathogenic Reversion

Because influenza viruses possess inherent pathogenicity—particularly avian-derived strains—engineering efforts must incorporate stringent safety features to ensure attenuation in normal tissues and prevent reversion to virulence (Sułek et al., 2025).


7.2 Barriers to Efficient Delivery

The extracellular matrix of PDAC restricts viral distribution, and systemic delivery is further impeded by neutralizing antibodies and interferon responses. These barriers necessitate innovative delivery approaches and improved viral design.


7.3 Lack of Clinical Translation

Despite encouraging preclinical studies, no influenza-based oncolytic viruses have entered clinical trials for PDAC. Major translational gaps include optimization of tumor specificity, reliable biomanufacturing, and development of predictive animal models.

 

8. Future Directions


8.1 Development of Multi-Armed Influenza OVs

Emerging platforms may integrate multiple mechanisms—lysis, checkpoint inhibition, cytokine support, and stromal remodeling—within a single viral vector to maximize efficacy.


8.2 Personalized Virotherapy Based on Tumor Profiling

Advances in neoantigen mapping and receptor profiling may enable individualized influenza A OV designs tailored to specific tumor characteristics (Vorobjeva et al., 2022).


8.3 Integration with mRNA Vaccines or Cell-Based Immunotherapies

Influenza OVs may serve as priming agents to enhance the effectiveness of mRNA vaccines or CAR-T therapies, particularly by reshaping the tumor microenvironment.

 

9. Conclusion


Oncolytic influenza A viruses represent a highly promising yet underdeveloped therapeutic platform for pancreatic ductal adenocarcinoma. Foundational studies demonstrate their capacity for selective tumor cell infection and lysis, while more recent engineering advances have enabled delivery of immunomodulatory payloads and synergy with immune checkpoint blockade. Although substantial mechanistic evidence supports their application in PDAC, barriers related to biosafety, delivery, and translational validation must be addressed. Continued research into genetic optimization, stromal penetration, and microenvironment modulation will be essential for advancing influenza-based oncolytic virotherapy toward clinical evaluation. With ongoing improvements in synthetic virology and immuno-oncology, influenza A OVs hold significant potential to contribute to future therapeutic strategies for PDAC.

 

References

1


1.Achim, E., Pîrlici, E., Cristea, C., & Tertis, M. (2025). Design and efficacy of oncolytic viruses and antitumor vaccines: A dead end in the immunotherapy of pancreatic cancer? International Journal of Molecular Sciences, 26(19), 9640. https://doi.org/10.3390/ijms26199640

2. Chen, L., Huang, Z., & colleagues. (2023). Oncolytic viral therapy: A review and promising future. [Jurnal]. https://thejns.org/view/journals/j-neurosurg/140/2/article-p319.xml.

3.Donelan, S. C., & National Cancer Institute. (2016). Oncolytic influenza A virus. NCI Drug Dictionary. https://www.cancer.gov/publications/dictionaries/cancer-drug/def/oncolytic-influenza-a-virus

4.Esteves, M., & colleagues. (2025). Oncolytic viruses: A novel therapeutic approach for pancreatic ductal adenocarcinoma — current landscape and future directions. Molecular Therapy – Oncology. https://www.cell.com/molecular-therapy-family/oncology/fulltext/S2950-3299(25)00138-9

5.Hamidi-Sofiani, V., Rakhshi, R., Moradi, N., Zeynali, P., Nakhaie, M., & Behboudi, E. (2022). Oncolytic viruses and pancreatic cancer. Cancer Treatment and Research Communications, 31, 100563. https://doi.org/10.1016/j.ctarc.2022.100563

6.Kasloff, S. B., Pizzuto, M. S., Silic-Benussi, M., Pavone, S., Ciminale, V., & Capua, I. (2014). Oncolytic activity of avian influenza virus in human pancreatic ductal adenocarcinoma cell lines. Journal of Virology, 88(16), 9321–9334. https://doi.org/10.1128/JVI.00929-14

7. Lei, G., Li, B., Yang, H., Sun, F., Li, D., Yan, J., Wang, Y., Li, R., Liu, H., Zhang, S., Li, Y., & Yang, P. (2022). Therapeutic efficacy of an oncolytic influenza virus carrying an antibody against programmed cell death 1 in hepatocellular carcinoma. Human Gene Therapy, 33(5-6), 309–317.

8.Lei, G., Li, B., Yang, H., Sun, F., Li, D., Yan, J., Wang, Y., Li, R., Liu, H., Zhang, S., Li, Y., & Yang, P. (2023). A recombinant oncolytic influenza virus expressing a PD-L1 antibody induces CD8+ T-cell activation via the cGAS–STING pathway in mice with hepatocellular carcinoma. Journal of Medical Virology, 95(7), e28854. https://doi.org/10.1002/jmv.28854.

9.Lin, D., Shen, Y., & Liang, T. (2023). Oncolytic virotherapy: Basic principles, recent advances and future directions. Signal Transduction and Targeted Therapy, 8, 156. https://doi.org/10.1038/s41392-023-01407-6

10.Reddy, R., Patel, M. A., Kanojia, D., Hu, P., Zhang, L., & Lesniak, M. S. (2024). Oncolytic viral therapy: a review and promising future directions. Journal of Neurosurgery, 140(2), 319–327. https://doi.org/10.3171/2023.6.JNS23243.

11.Rivers-Orellana, S., Bautista, J., Palacios-Zavala, D., Ojeda-Mosquera, S., Altamirano-Colina, A., Alcocer-Veintimilla, M., Parrales-Rosales, G., Izquierdo-Condoy, J., Vásconez-González, J., Ortiz-Prado, E., Muslin, C., & López-Cortés, A. (2025). Oncolytic virotherapy and tumor microenvironment remodeling: Challenges and prospects. Clinical and Experimental Medicine 25, 256. https://link.springer.com/article/10.1007/s10238-025-01691-2

12.Sułek, M., & colleagues. (2025). Oncolytic viruses and tumor immunotherapy: Status of the art in 2025. Cells, 14(22), 1825. https://doi.org/10.3390/cells14221825

13.van Rikxoort, M., Michaelis, M., Wolschek, M., Muster, T., Egorov, A., Seipelt, J., Doerr, H. W., & Cinatl, J. (2012). Oncolytic effects of a novel influenza A virus expressing interleukin-15 from the NS reading frame. PLoS ONE, 7(5), e36506. https://doi.org/10.1371/journal.pone.0036506

14.Vorobjeva, I. Vorobjeva, & Oleg, P. Zhirnov. (2022). Modern approaches to treating cancer with oncolytic viruses. MIR. Journal 9(1), 91-112. https://www.scienceopen.com/hosted-document?doi=10.18527%2F2500-2236-2022-9-1-91-112

#OncolyticVirus 

#PancreaticCancer 

#InfluenzaA 

#CancerImmunotherapy 

#Virotherapy








Shock! Inilah Mekanisme Rahasia Superbug yang Diam-Diam Menghancurkan Dunia Medis!

 



Mekanisme Rahasia Superbug: Begini Cara AMR Pelan-Pelan Melumpuhkan Dunia Medis!

Bagian Pertama – Pengantar dan Dasar Biologis Terjadinya Resistensi

 

AMR: Ancaman Sunyi yang Mengguncang Fondasi Kedokteran Modern

 

Antibiotik pernah dianggap sebagai “keajaiban abad 20” yang mengubah wajah pengobatan modern. Berkat obat ini, operasi besar, transplantasi organ, hingga terapi kanker bisa dilakukan dengan risiko infeksi yang jauh lebih rendah. Namun, kehebatan antibiotik yang dulu sangat kita banggakan kini mulai tergerus oleh fenomena yang diam-diam tumbuh dalam sistem biologis bakteri—antimicrobial resistance (AMR).

 

Organisasi Kesehatan Dunia (WHO) bahkan menempatkan AMR sebagai tiga besar ancaman kesehatan global abad ke-21. Angkanya mencengangkan: infeksi bakteri resistan diperkirakan menewaskan 23.000 orang per tahun di AS, menghabiskan biaya kesehatan hingga 20 miliar dolar, dan secara global berpotensi menyebabkan 300 juta kematian dini serta kerugian 100 triliun dolar pada tahun 2050 jika tidak dikendalikan. Dunia kedokteran, sedikit demi sedikit, sedang kehilangan salah satu senjata terkuatnya.

 

Resistensi: Bukan Fenomena Baru, Tapi Kini Lebih Berbahaya

 

Salah satu fakta penting yang sampai hari ini sering disalahpahami adalah bahwa resistensi antimikroba bukanlah fenomena buatan manusia. Jauh sebelum antibiotik ditemukan, bakteri di alam telah saling melawan menggunakan molekul antimikroba alami. Karena itu, banyak bakteri telah memiliki mekanisme “pertahanan purba”, yang membuat mereka secara intrinsik resistan terhadap beberapa antibiotik.

 

Masalah sebenarnya muncul ketika bakteri yang tadinya tidak resistan, kini berubah menjadi kebal akibat tekanan seleksi dari penggunaan antibiotik pada manusia, hewan, dan lingkungan. Resistensi jenis ini disebut “resistensi yang didapat”, dan inilah sumber utama krisis AMR saat ini.

 

Perubahan tersebut dapat terjadi melalui dua jalur utama:

 

1. Resistensi Karena Mutasi: Evolusi Kilat dalam Skala Mikroskopis

 

Bakteri dapat tiba-tiba menjadi kebal hanya karena satu mutasi kecil pada bagian DNA-nya. Mutasi ini terjadi secara acak, namun menjadi “berharga” ketika antibiotik hadir sebagai seleksi alam.

Mutasi dapat membuat bakteri kebal dengan cara:

  • mengubah bentuk target antibiotik sehingga obat tidak bisa “menempel” lagi,
  • menurunkan kemampuan obat masuk ke dalam sel,
  • mengaktifkan pompa efflux untuk membuang obat keluar,
  • atau melakukan perubahan metabolisme besar-besaran agar tetap bertahan.

Tak jarang, mutasi ini membuat bakteri kurang “bugar”. Namun dalam lingkungan yang penuh antibiotik, mutan inilah yang bertahan dan berkembang.

 

2. Transfer Gen Horizontal: Bakteri Saling Berbagi ‘Senjata’ Resistensi

 

Berbeda dengan manusia yang hanya mewariskan DNA kepada anaknya, bakteri memiliki trik yang jauh lebih agresif: mereka bisa bertukar gen secara langsung dengan sesama bakteri lain, bahkan lintas spesies. Proses ini disebut horizontal gene transfer (HGT), dan menjadi motor utama ledakan AMR di seluruh dunia.

Ada tiga jalur utama HGT:

  • Transformasi – bakteri “memungut” DNA yang tercecer di lingkungan,
  • Transduksi – DNA ditransfer melalui virus bakteri (fag),
  • Konjugasi – proses mirip “perkawinan bakteri” yang mentransfer plasmid antimikroba.

Bahkan ada elemen genetik khusus bernama integron, yang bekerja seperti “perpustakaan gen resistensi” yang dapat merekrut gen baru, menyimpannya, dan mengekspresikannya. Inilah alasan bakteri bisa tiba-tiba memiliki paket lengkap resistensi multiobat.

HGT banyak terjadi di saluran pencernaan manusia, terutama ketika antibiotik digunakan berlebihan—menciptakan “festival pertukaran gen” di mikrobiota usus.

 

Mekanisme Resistensi: Repertoar Canggih yang Telah Berevolusi Jutaan Tahun

 

Walaupun kecil dan sederhana, bakteri memiliki “arsenal” biokimia yang mengejutkan. Mereka dapat bertahan dari serangan antibiotik melalui beberapa jalur utama:

  1. Memodifikasi antibiotik

Mereka menghasilkan enzim yang menempelkan gugus kimia (asetilasi, adenilasi, fosforilasi) pada antibiotik sehingga obat tak lagi muat menempel pada targetnya.

    • Contoh: enzim aminoglycoside-modifying enzymes (AMEs) yang menonaktifkan gentamisin dan amikasin.
  1. Menghancurkan antibiotik

Ini mekanisme legendaris pada bakteri gram negatif: produksi β-laktamase, enzim yang memotong cincin β-laktam pada penisilin dan sefalosporin.

    • Faktanya, β-laktamase telah ditemukan jauh sebelum penisilin dipasarkan.
  1. Mencegah obat mencapai target

Bakteri gram negatif memiliki membran luar yang bekerja seperti “gerbang keamanan”, mengatur keluar masuknya antibiotik melalui porin.

  1. Mengubah target obat atau menciptakan jalur alternatif

Bakteri bisa memodifikasi protein penting di dalam tubuhnya sehingga antibiotik menjadi tidak efektif—seperti mengganti kunci agar tidak cocok dengan kunci palsu yang dibuat antibiotik.

 

Mengapa Mekanisme Ini Berbahaya bagi Kita?

 

Karena bakteri:

  • memiliki laju reproduksi sangat cepat,
  • mudah mengalami mutasi,
  • dapat saling mentransfer gen,
  • dan hidup dalam komunitas padat seperti usus, tanah, air limbah, serta lingkungan rumah sakit.

Kombinasi ini menciptakan sistem evolusi super-efisien yang terus menghasilkan varian kebal baru, bahkan lebih cepat dari kemampuan manusia mengembangkan antibiotik baru.

 

Penutup: Menghadapi Musuh yang Semakin Cerdas

 

AMR bukan datang tiba-tiba; ia tumbuh diam-diam, memanfaatkan setiap celah dari penggunaan antibiotik yang tidak tepat. Jika dibiarkan, kita berisiko kembali ke “era pra-antibiotik”, ketika infeksi sederhana dapat mematikan.

Memahami bagaimana bakteri membangun dan menyebarkan resistensi adalah langkah pertama untuk menahan laju ancaman ini. Pada bagian-bagian berikutnya, kita akan membahas lebih dalam bagaimana mekanisme molekuler ini bekerja, bagaimana superbug menyebar, dan apa yang bisa dilakukan manusia untuk memutus rantai evolusi resistensi.

 

SUMBER:

WASPADA! Mekanisme Rahasia Superbug: Begini Cara AMR Pelan-Pelan Melumpuhkan Dunia Medis!  (https://atanitokyo.blogspot.com/2024/04/mekanisme-resistensi-antibiotik.html)


#Superbug 

#AMR 

#AntibioticResistance 

#GlobalHealth 

#Microbiology

Thursday, 27 November 2025

Indonesia’s Agricultural Rise: The Hidden Global Power Shifting 21st-Century Food Security and Productivity Rankings

 

Global Agricultural Performance and Indonesia’s Strategic Position in the 21st Century

 

Pudjiatmoko

Member of the Nanotechnology Technical Committee, National Standardization Agency, Indonesia

 

ABSTRACT

 

The global agricultural sector is experiencing rapid transformation driven by technological innovation, climate variability, demographic change, and evolving agrarian policies. Using recent data from the Food and Agriculture Organization (FAO) and the United States Department of Agriculture (USDA), this article examines the performance of leading agricultural countries and highlights the growing significance of Indonesia in the global food system. Particular emphasis is placed on Total Factor Productivity (TFP) as a critical indicator for assessing long-term agricultural efficiency and competitiveness. The analysis demonstrates that countries with high TFP—including Saudi Arabia and Kazakhstan—are able to achieve substantial productivity gains without proportional increases in land, labor, or other inputs. The article concludes by outlining policy implications for strengthening Indonesia’s agricultural resilience and innovation capacity.

Keywords: Global agriculture, Total Factor Productivity (TFP), agricultural efficiency, food security, technological innovation, climate resilience, Indonesia agriculture, productivity growth.

 

1. INTRODUCTION

 

Agriculture remains a foundational sector for global food security, rural development, and economic stability. In recent decades, the sector has undergone profound changes driven by technological advancement, climate pressures, and increasing demand for sustainable production systems (FAO, 2017). As a result, evaluating agricultural performance requires not only an assessment of production volume but also a focus on efficiency, innovation, and environmental sustainability.

Total Factor Productivity (TFP), widely used in agricultural economics, provides a comprehensive measure of productivity gains attributable to technological progress, management improvements, and structural transformation (Fuglie, 2019). TFP has become essential for comparing agricultural performance across countries and for understanding long-term growth patterns in the global food system.

This paper analyzes countries with the most advanced agricultural sectors, drawing on FAO and USDA datasets. It also examines Indonesia’s position within this landscape, emphasizing the country’s potential to strengthen agricultural competitiveness through technological adoption and efficiency improvements.

 

2. GLOBAL AGRICULTURAL PERFORMANCE

 

Table 1 presents the top 10 countries based on the agricultural Total Factor Productivity (TFP) index, 2022 (USDA ERS International Agricultural Productivity dataset, 2015 base = 100).


Table 1. Top 10 Countries by Agricultural Sector

Country

Main Production

2023 Production (Million Tons)

USDA TFP Index 2022

United States

Corn, cow milk, meat

103 (milk), 1.21 billion (corn)

100.609

China

Rice, wheat, eggs

1.6 billion (rice & wheat), 64% (global eggs)

113.777

Brazil

Palm oil, soybean, sugarcane

409 (palm oil), 39% (global sugarcane)

96.594

India

Wheat, rice, cow milk

127 (milk), 26% (global rice & wheat)

112.342

European Union

Cow milk, sugar beet

34 (Germany milk), 188 (sugar beet)

107.352

Indonesia

Palm oil, cocoa, coffee

409 (palm oil)

107.352

Australia

Wheat, beef

199 (global wheat)

110.689

Russia

Wheat, barley

11% (global wheat)

113.150

Saudi Arabia

Vertical farming

-

175.382

Kazakhstan

Wheat, grains

131.592

 

2.1 United States

The United States is globally recognized for its high agricultural output and advanced input-use efficiency. In 2023, the U.S. produced 103 million tons of cow’s milk and accounted for 42% of global corn output (FAO, 2024). High productivity levels are sustained through precision farming, biotechnology, and large-scale mechanization.


2.2 China

China remains the world’s largest producer of rice, wheat, and eggs. Its 2023 cereal production exceeded 1.6 billion tons, supported by extensive irrigation systems, hybrid varieties, and state-led agricultural modernization (Huang et al., 2021). Despite limited land resources, China has maintained strong productivity growth through continuous technological improvements.


2.3 Brazil

Brazil is a major global supplier of soybean, sugarcane, and livestock products. Its agribusiness strength stems from land expansion, investment in mechanized farming, and the development of high-yield crop varieties (da Silva & de Souza, 2020). The country accounted for 39% of global sugarcane production in 2023.


2.4 India

India dominates global dairy production, with output reaching 127 million tons in 2023. Wheat and rice production also contribute significantly to global supply. Productivity increases are closely linked to improvements in irrigation efficiency and the adoption of high-yielding seeds (Pingali, 2012).


2.5 European Union

The European Union maintains a highly efficient agricultural system supported by strong regulatory frameworks and advanced production technologies. Germany, France, and the Netherlands play central roles, with the EU producing 188 million tons of sugar beet in 2023 (European Commission, 2023).


2.6 Indonesia

Indonesia is the world’s leading producer of palm oil and an important exporter of cocoa and coffee. In 2023, the country’s palm oil production reached approximately 409 million tons. Agricultural modernization programs—including digital agriculture and mechanization—have contributed to improved productivity (Ministry of Agriculture Republic of Indonesia, 2023).


2.7 Australia

Australia’s agricultural sector excels despite its arid environment. Its success is supported by innovations in dryland agriculture, water-efficient irrigation, and climate-smart technologies (Mallawaarachchi & Foster, 2021).


2.8 Russia

Russia is the world’s largest wheat exporter, capturing 11% of global supply in 2023. Its competitive advantage stems from extensive arable land and significant investment in cereal production and export infrastructure (Rylko & Jolly, 2005).

 

3. TOTAL FACTOR PRODUCTIVITY (TFP) AND AGRICULTURAL EFFICIENCY


TFP offers a comprehensive measure of agricultural efficiency by quantifying improvements that arise not from additional inputs but from innovation, technological adoption, and better management practices (Fuglie & Rada, 2013). Countries with high TFP are capable of producing more with the same or fewer resources—an essential characteristic for achieving sustainable food systems.

Saudi Arabia and Kazakhstan are notable examples. Saudi Arabia’s TFP index reached 175.38 in 2022, driven by large-scale investments in vertical farming, controlled-environment agriculture, and advanced irrigation systems (USDA, 2022). Kazakhstan, with a TFP index of 131.59, has emerged as a regional leader in sustainable grain production, supported by vast land availability and improved production technologies.

TFP is widely recognized as a key indicator for long-term agricultural resilience. High TFP growth correlates with stronger food system stability, lower environmental pressure, and enhanced competitiveness (IFPRI, 2019; FAO, 2010).

 

4. DISCUSSION: INDONESIA’S STRATEGIC POSITION

 

Indonesia’s agricultural sector has continued to grow through expansion of mechanization, digitalization programs, and improvements in supply chain efficiency. However, Indonesia’s long-term competitiveness will increasingly depend on its ability to enhance TFP through intensified research, innovation, and private-sector participation in agricultural development.

Given that returns on investment in agricultural R&D range between 30% and 75% (Alston et al., 2020), increasing national investment in research institutions and innovation ecosystems is critical. Policies that strengthen intellectual property rights—while ensuring accessibility for smallholder farmers—are essential to promoting a sustainable, inclusive agricultural innovation system.

Indonesia’s strong performance in palm oil and cocoa demonstrates significant global relevance, yet diversification into high-value crops and advanced technologies will be necessary to maintain growth under increasing climate and market pressures.

 

5. CONCLUSION


Agricultural competitiveness in the 21st century is shaped not merely by land availability or input intensity but by technological capability, innovation, and resource-use efficiency. Countries such as the United States, China, Brazil, and the European Union continue to lead in production and innovation, while Saudi Arabia and Kazakhstan demonstrate the transformative impact of high TFP.

Indonesia’s position as a global agricultural player is strengthening, particularly in palm oil, cocoa, and coffee production. To sustain long-term growth, Indonesia must prioritize TFP enhancement through investment in agricultural R&D, digitalization, mechanization, and environmentally sustainable practices. Strengthening these areas will enable Indonesia to secure a more resilient and competitive agricultural future.

 

REFERENCES

 

1.Alston, J. M., Andersen, M. A., James, J. S., & Pardey, G. P. (2020). The economics of agricultural R&D. Annual Review of Resource Economics, 12, 1–24.

2.da Silva, J. V., & de Souza, M. A. (2020). Technological advances in Brazilian agriculture. Journal of Agribusiness and Rural Development, 55(4), 455–468.

3. European Commission. (2023). EU agricultural markets annual report. Brussels: Directorate-General for Agriculture.

4.FAO. (2010). Agricultural productivity and sustainability indicators. Rome: Food and Agriculture Organization.

5. FAO. (2017). The future of food and agriculture: Trends and challenges. Rome: Food and Agriculture Organization.

6. FAO. (2024). FAOSTAT statistical database. Food and Agriculture Organization.

7.Fuglie, K. O. (2019). Total factor productivity in global agriculture. Applied Economic Perspectives and Policy, 41(4), 611–628.

8.Fuglie, K., & Rada, N. (2013). Resources, policies, and agricultural productivity in sub-Saharan Africa. USDA Economic Research Report No. 145.

9.Huang, J., Wang, X., & Rozelle, S. (2021). China’s agricultural modernization. Food Policy, 103, 102–115.

10. IFPRI. (2019). Global food policy report 2019. International Food Policy Research Institute.

11.Mallawaarachchi, T., & Foster, A. (2021). Climate resilience in Australian agriculture. Australian Journal of Agricultural and Resource Economics, 65(3), 437–456.

12.Ministry of Agriculture Republic of Indonesia. (2023). Annual agricultural performance report. Jakarta: Government of Indonesia.

13.Pingali, P. (2012). Green Revolution: Impacts, limits, and the path ahead. Proceedings of the National Academy of Sciences, 109(31), 12302–12308.

14.Rylko, D., & Jolly, R. (2005). Russia’s grain economy: Changes and challenges. Food Policy, 30(3), 253–268.

15.USDA. (2022). International agricultural productivity database. United States Department of Agriculture.


#Agriculture 

#TFP 

#Indonesia 

#FoodSecurity 

#Innovation