Subscribe

RSS Feed (xml)

Powered By

Skin Design: Kisi Karunia
Base Code: Free Blogger Skins

Powered by Blogger

Saturday, 22 November 2025

The Silent Crisis in Academia: How ‘Publish or Perish’ Is Eroding the True Meaning of Scholarship

 


Reconfiguration of Academic Culture: A Critical Analysis of Procedural Dominance, Publication Pressure, and the Erosion of Scholarly Ethos in Contemporary Universities

 

Pudjiatmoko

Member of the Nanotechnology Technical Committee, National Standardization Agency, Indonesia


Abstract

 

The rapid transformation of academic institutions over the past two decades has repositioned universities from traditional centers of intellectual inquiry into highly regulated, performance-driven environments. This article examines the tension between substantive knowledge production and procedural compliance, particularly within the global “publish or perish” regime. Drawing upon international literature and empirical patterns in higher education, this study analyzes how bureaucratization, publication metrics, and commercialized scholarly publishing reshape academic practices among students, early-career researchers, and senior academics. The paper concludes with strategic recommendations for sustaining scholarly integrity while navigating increasingly metricized academic systems.

 

1. Introduction

 

Universities historically served as intellectual sanctuaries where ideas were debated, uncertainties acknowledged, and knowledge pursued through collective inquiry. However, contemporary academic landscapes reveal a growing shift toward managerialism, standardization, and metric-based evaluation. This transformation—marked by escalating administrative procedures, template-driven writing, and dependence on global indexing systems—raises fundamental concerns regarding the preservation of scholarly ethos. For mature students or returning professionals seeking intellectual renewal, these systemic shifts often produce dissonance between the ideal of the university and its current operational reality.

 

This paper critically analyzes these transformations, situating them within broader global restructuring processes that have integrated academic labor into competitive knowledge industries. By synthesizing relevant literature, it aims to elucidate the implications of procedural dominance on research quality, academic identity, and intellectual independence.

 

2. From Intellectual Space to Procedural Space

 

Historically, academic environments encouraged open inquiry characterized by humility and collaborative exploration. The common pedagogical stance—“I do not know; let us examine this together”—functioned as a cornerstone of intellectual honesty. Yet the contemporary university increasingly replaces such epistemic openness with rigid procedural structures. Scholars and students alike must adhere to detailed templates that prescribe background sections, “state of the art” paragraphs, identified research gaps, and hypothesis formulation—often irrespective of disciplinary nuance.

 

This proceduralization, while intended to enhance research clarity and standardization, risks substituting formal correctness for substantive engagement. The proliferation of similarity checks, prestructured writing conventions, keyword optimization, and alignment with journal templates has fostered what Alvesson (2013) terms the triumph of emptiness, where administrative compliance is mistaken for intellectual achievement. As a result, research outputs risk becoming derivative, mechanistic, and detached from pressing societal questions.

 

3. Publish or Perish and the Industrialization of Knowledge

 

The global academic system has normalized the expectation of continuous publication as a prerequisite for professional survival. Known as publish or perish, this culture compels scholars to demonstrate visibility through peer-reviewed outputs (Moosa, 2018). In the last decade, the volume of published articles has surged by more than 50% (Financial Times, 2024), reflecting both expanded participation and intensified pressure.

 

Simultaneously, the scholarly publishing industry has evolved into a multibillion-dollar enterprise, dominated by a handful of major publishers with high profit margins (Björk, 2023). Between 2019 and 2023, Article Processing Charges (APC) collected by six major publishers exceeded USD 8.3 billion, with approximately USD 2.5 billion collected in 2023 alone (Haustein et al., 2024). Leading open-access journals frequently charge USD 1,500–3,000 per article (Solomon & Björk, 2012), imposing significant financial burdens on researchers in low- and middle-income countries.

 

Consequently, publication has shifted from a purely scholarly exercise into a commodified process shaped by market forces. Publications increasingly function as academic currency—necessary for promotion, graduation, funding eligibility, and institutional rankings. This commercialization risks deepening global inequalities in scholarly participation.

 

4. Invisible Pressures and Epistemic Consequences

 

Publication-based evaluation systems exert subtle yet pervasive pressure on academic actors. Early-career faculty recognize that contract renewal and career progression are often contingent upon achieving specific publication targets. Likewise, postgraduate students frequently face graduation requirements tied to publishing in indexed journals, irrespective of disciplinary conventions or research maturity.

 

Such pressures have been empirically linked to several problematic behaviors, including superficial research, salami slicing, inflated authorship, and occasional breaches of research ethics (de Rond & Miller, 2005; Moosa, 2018). Although universities appear vibrant with seminars, calls for papers, and conferences, many academics privately express disillusionment as the intrinsic motivation for knowledge creation erodes. Research becomes instrumentalized as a point-accumulating activity rather than a pursuit of truth or societal contribution.

 

5. Navigating the System: Scholarly Agency Within Structural Constraints

 

Despite the dominance of metricized systems, academics retain a degree of agency. Scholars can adhere to necessary procedural frameworks while maintaining epistemic integrity. Several strategies are proposed:

  1. Instrumental Use of Structure

Procedural tools (e.g., IMRAD, citation styles, templates) may enhance clarity but should not dictate research direction. Substantive questions must remain the central driver of inquiry.

  1. Socially Relevant Research Themes

Researchers should prioritize issues with meaningful societal implications—poverty, public health disparities, governance failures, religious philanthropy, and resource inequities—rather than tailoring topics solely for indexability.

  1. Building Micro-communities of Integrity

Informal discussion groups that emphasize intellectual honesty, critique, and humility can counterbalance structural pressures. Reintroducing statements such as “I do not know; let us investigate” helps reaffirm academic authenticity.

  1. Dual Orientation in Writing

Scholars should write for two complementary audiences:

(a) reviewers who evaluate methodological rigor, and

(b) affected communities whose lived realities motivate the research.

 

Ideally, academic soundness and public relevance coexist.

 

6. Ethical and Theological Foundations for Scholarly Integrity

 

Classical Islamic teachings offer relevant ethical grounding for Muslim scholars navigating contemporary academia. The Qur’anic verse “Indeed, those who fear Allah among His servants are those who possess knowledge” (Qur’an 35:28) situates knowledge within a moral-spiritual framework rather than a metric-driven one. Likewise, the hadith “Actions are judged by intentions” (al-Bukhārī & Muslim) underscores the primacy of sincerity over outward achievement.

 

These principles emphasize that scholarly merit cannot be reduced to quantitative indicators. While indices may enhance visibility, they cannot substitute for intellectual honesty, societal relevance, or moral accountability.

 

7. Conclusion

 

Universities worldwide are undergoing profound transformations marked by heightened proceduralism and publication pressures. These developments reshape academic identities, alter research trajectories, and risk marginalizing the deeper purpose of knowledge creation. Yet within these challenges lies the possibility of reaffirming scholarly virtues. By engaging critically with the system—utilizing its frameworks without surrendering intellectual autonomy—scholars can contribute to both academic and societal advancement.

 

Sustaining the ethos of inquiry, humility, and integrity requires conscious effort. Even amidst expanding administrative demands and commercialized publication cultures, it remains possible to preserve the deeper meaning of scholarship: the pursuit of truth, the service of society, and the cultivation of moral-intellectual character.

 

References


Alvesson, M. (2013). The Triumph of Emptiness: Consumption, Higher Education, and Work Organization. Oxford University Press.

Björk, B.-C. (2023). “Global Trends in Scholarly Publishing Economics.” Journal of Scholarly Communication, 12(2), 45–62.

de Rond, M., & Miller, A. N. (2005). “Publish or perish: Bane or boon of academic life?” Journal of Management Inquiry, 14(4), 321–329.

Financial Times. (2024). “The unstoppable rise of global research output.”

Haustein, S., Larivière, V., & Mongeon, P. (2024). “APC Economics in the Age of Open Access.” Scientometrics, 129(1), 211–240.

Moosa, I. A. (2018). Publish or Perish: Perceived Benefits versus Unintended Consequences. Edward Elgar Publishing.

Solomon, D. J., & Björk, B.-C. (2012). “A study of open access journals using article processing charges.” Journal of the American Society for Information Science and Technology, 63(8), 1485–1495.

#AcademicCulture 
#PublishOrPerish 
#HigherEducation 
#ResearchIntegrity 
#ScholarlyEthos

Friday, 21 November 2025

Revolutionizing Poultry Nutrition: Breakthrough Nanotechnology Feed Additives That Transform Performance and Health (2020–2025)

 



Nanotechnology-Based Feed Additives and Nano-Enabled Feeds in Poultry Nutrition: A Comprehensive Review of Five-Year Advances (2020–2025)

 

Pudjiatmoko

Member of the Nanotechnology Technical Committee, National Standardization Agency, Indonesia

 

 

ABSTRACT

 

Nanotechnology has rapidly emerged as a transformative approach in poultry nutrition, offering innovative solutions to enhance nutrient delivery, bioavailability, and biological efficacy of feed additives. During the past five years, research on nano-enabled nutrition has expanded considerably, focusing on nano-minerals, chitosan-based nanopolymers, nano-encapsulated essential oils, metal-based nanoparticles, and probiotic nano-delivery systems. This review systematically synthesizes advances from 2020 to 2025 to elucidate their mechanisms of action, impacts on growth performance, feed efficiency, gut health, immune modulation, antioxidant defense, and safety considerations. A narrative and structured review was conducted using literature obtained from Web of Science, Scopus, PubMed, and Google Scholar, limited to peer-reviewed English-language articles published between 2020 and 2025. Studies were included if they evaluated nanoparticles in poultry diets, applied in vivo or mechanistic approaches, and reported measurable outcomes. A summary table documents authors, nanoparticle types, poultry species, doses, and principal findings.

 

Recent evidence shows that nano-minerals such as zinc oxide (ZnO-NP), copper (Cu-NP), and selenium nanoparticles (Se-NP) exhibit substantially higher bioavailability and biological activity than conventional mineral forms, resulting in improved growth, feed conversion ratio (FCR), antioxidant capacity, and gut function. Chitosan nanoparticles enhance immunity, gastrointestinal integrity, and microbial balance, while silver nanoparticles demonstrate strong antimicrobial activity but raise concerns regarding tissue accumulation and oxidative stress. Nanoencapsulation markedly improves the stability and gastrointestinal delivery of essential oils and probiotics. Despite these promising benefits, questions remain regarding nanoparticle toxicity, oxidative stress potential, organ deposition, and regulatory gaps.

 

Overall, nanotechnology-enabled feed additives offer substantial potential for improving poultry performance and production sustainability. However, standardized safety assessments, dose optimization, long-term toxicity evaluations, and harmonized regulatory frameworks are urgently required before widespread industry adoption can be recommended.

Keywords: Nanotechnology, feed additives, poultry, nanoparticles, nano-minerals, nano-encapsulation, bioavailability, gut health.

 

1. INTRODUCTION

 

Nanotechnology offers unprecedented opportunities to enhance nutrient utilization, feed efficiency, and health outcomes in poultry production. Defined as particulate materials within the range of 1–100 nm, nanoparticles possess distinctive physicochemical characteristics—including high surface-to-volume ratios, increased charge density, enhanced reactivity, and improved permeability across biological membranes—that make them highly suitable as feed additives, antimicrobial agents, and controlled-release delivery systems. These properties differentiate them fundamentally from their conventional macro- and micro-sized counterparts, enabling superior biological performance at reduced inclusion levels.

 

Research progress during the period 2020–2025 reflects a rapid expansion in the incorporation of nanotechnology into poultry nutrition. This trend has been driven by global pressure to reduce antibiotic use, rising feed costs that demand more efficient nutrient utilization, and growing interest in precision-nutrition strategies that enable targeted delivery of micro-ingredients. Concurrently, evolving insights into nanoparticle toxicity and metabolic fate have encouraged more systematic investigations of their safety profiles.

 

Nanotechnology-enabled feed additives explored in recent literature encompass nano-minerals such as ZnO-NP, Cu-NP, and Se-NP; biopolymer-based nanoparticles such as chitosan; metallic nanoparticles such as silver nanoparticles; and nanoencapsulated bioactive compounds including essential oils, probiotics, vitamins, organic acids, and nanoemulsions. This review consolidates findings from the last five years to evaluate their mechanisms of action, documented benefits, safety challenges, and future implications for poultry nutrition.

 

2. METHODS

 

2.1 Literature Search Strategy

A systematic literature search was conducted using Scopus, Web of Science Core Collection, PubMed, ScienceDirect, and Google Scholar. Search terms included variations of “nanoparticle,” “nano-mineral,” “nano-selenium,” “nano-copper,” “nano-zinc,” “nano feed additive,” “poultry,” “broiler,” “layer,” “nanotechnology feed,” “nanoencapsulation,” and “silver nanoparticles poultry.” The search was restricted to publications in English between January 2020 and January 2025. Only peer-reviewed articles, review papers, and in vivo poultry experiments were considered eligible.

 

2.2 Inclusion and Exclusion Criteria

Studies were included if they investigated nanoparticles or nano-delivery systems incorporated into poultry diets and reported quantitative outcomes related to growth, feed conversion, immunity, oxidative stress biomarkers, gut morphology, or microbiology. Mechanistic in vitro studies directly relevant to poultry gastrointestinal physiology were also considered. Studies were excluded if they did not involve nanoparticle-based compounds, if nanoparticles were applied solely as vaccine components or disinfectants, or if methodological details were insufficient for interpretation. Non-peer-reviewed publications were excluded.

 

3. RESULTS AND DISCUSSION

 

3.1 Overview of Studies from 2020 to 2025

 

The reviewed studies, as summarized in the accompanying table, reveal consistent support for the beneficial effects of nanotechnology-enabled feed additives across broilers and layers. Collectively, they demonstrate improvements in growth performance, feed efficiency, gut morphology, immune modulation, antioxidant status, microbial balance, and nutrient retention, while also highlighting safety challenges associated with specific nanoparticle types.

 

3.2 Nano-Minerals in Poultry Nutrition

 

3.2.1 Zinc Oxide Nanoparticles (ZnO-NP)

Zinc oxide nanoparticles represent one of the most extensively studied nano-minerals in poultry nutrition. Compared with conventional zinc sulfate, ZnO-NP demonstrates markedly higher intestinal absorption and antimicrobial activity, along with improved zinc bioavailability that allows substantial reductions in supplementation levels. Studies by Yang et al. (2025) and Hidayat et al. (2024) consistently report enhanced growth performance, improved FCR, modulation of intestinal microbiota, increased activities of antioxidant enzymes such as SOD and GPx, and strengthened innate and adaptive immunity. However, safety evaluations by Dosoky et al. (2022) indicate that high doses can induce oxidative stress in hepatic and renal tissues, elevate malondialdehyde levels, and lead to tissue accumulation of zinc. These findings underscore the need for precise dose optimization, with most beneficial effects observed at 30–60 mg/kg depending on nanoparticle characteristics.

 

3.2.2 Selenium Nanoparticles (Se-NP)

Selenium nanoparticles have emerged as a superior alternative to traditional inorganic selenium sources due to their enhanced biocompatibility and reduced toxicity. Work by Hosseintabar-Ghasemabad et al. (2024) demonstrates that Se-NP improves total antioxidant capacity, elevates GPx and SOD activity, enhances growth rate, and reduces stress biomarkers—particularly under heat stress conditions. The improved performance of Se-NP is primarily attributed to enhanced gastrointestinal absorption, redox stability, and mitochondrial protection. Although safer than inorganic Se, the narrow therapeutic window of selenium necessitates careful dose regulation.

 

3.2.3 Copper Nanoparticles (Cu-NP)

Copper nanoparticles have shown compelling potential as antimicrobial agents and growth promoters. Sharif et al. (2021) report significant improvements in nutrient digestibility, villus height, crypt depth, and gut microbial balance at relatively low inclusion levels. Cu-NP also demonstrates greater retention efficiency than conventional copper sources. Nevertheless, concerns persist regarding oxidative stress at higher doses, potential hepatic accumulation, and interactions with other trace minerals, emphasizing the need for standardized dosing protocols.

 

3.3 Chitosan and Biopolymer Nanoparticles

Chitosan nanoparticles constitute a versatile natural nanopolymer with antimicrobial, immunomodulatory, and prebiotic properties. Research by Abd El-Ghany (2023) and Hassanen et al. (2023) shows that chitosan NPs reduce cecal pathogenic bacteria, improve gut morphology, enhance nutrient absorption, and support immune function. Chitosan nanoparticles are also widely used as carriers for essential oils, organic acids, and probiotics due to their high encapsulation efficiency and controlled-release profiles. Their biocompatibility and biodegradability make them particularly attractive for sustainable poultry production.

 

3.4 Silver Nanoparticles (Ag-NP)

Silver nanoparticles exhibit strong antimicrobial activity through mechanisms involving reactive oxygen species generation, membrane disruption, DNA interference, and biofilm inhibition. Studies by Lohakare et al. (2022) and Salem et al. (2021) show that low doses (<10 ppm) can improve feed efficiency and reduce pathogen load. However, Ag-NP carries a higher toxicity risk than most nano-minerals due to its propensity for organ accumulation and oxidative stress induction. Long-term safety data remain insufficient, and regulatory limitations are anticipated as more evidence emerges.

 

3.5 Nano-Encapsulated Essential Oils

Essential oils suffer from volatility and instability when incorporated into conventional feeds. Nanoencapsulation has addressed these issues by enhancing their oxidative stability, protecting them during feed processing, and enabling controlled release in the gastrointestinal tract. Movahedi et al. (2024) report improved antimicrobial efficacy, better digestibility, enhanced gut integrity, and improved immune status in broilers fed nano-encapsulated essential oils.

 

3.6 Nanoencapsulation of Probiotics

Probiotics often show reduced viability due to damage from feed processing and gastric acidity. Nanoencapsulation, as reviewed by Razavi et al. (2021), offers a targeted and protective delivery method that significantly increases probiotic survival, improves intestinal colonization, strengthens gut barrier function, and reduces pathogen colonization. Technologies such as chitosan coatings, alginate nanogels, nanofibers, and liposomal carriers have shown considerable promise, particularly for antibiotic-free poultry production systems.

 

3.7 Mechanisms of Action

Nanoparticles exert their biological effects through a variety of mechanisms, including enhanced bioavailability due to increased surface area and improved solubility, potent antimicrobial action driven by reactive oxygen species generation, modulation of antioxidant defense systems, immunostimulation through cytokine regulation, and improvements in gut morphology such as increased villus height and epithelial integrity. Nanoencapsulation further enables controlled release and site-specific delivery of bioactive compounds, increasing efficacy and reducing degradation during digestion.

 

3.8 Safety, Toxicity, and Regulatory Challenges

Despite their potential, several safety concerns remain unresolved. High doses of ZnO-NP can induce oxidative stress and accumulate in tissues, while Ag-NP shows the greatest toxicity risk. Cu-NP may interfere with other trace minerals, and Se-NP requires tight dose control due to its narrow margin of safety. Major knowledge gaps include the lack of long-term and multigenerational toxicity studies, insufficient ADME data, uncertain tissue-residue profiles, and limited information on environmental fate in manure. Regulatory frameworks in the EU, USA, and ASEAN treat most nano-feed additives as novel substances requiring extensive safety evaluations, contributing to slow industrial adoption.

 

4. CONCLUSION

 

Nanotechnology-based feed additives have demonstrated substantial potential to improve poultry feed efficiency, antioxidant status, gut health, immune response, and overall growth performance during the last five years. Nano-minerals such as ZnO-NP, Se-NP, and Cu-NP consistently outperform conventional mineral sources due to superior bioavailability and metabolic efficiency. Chitosan nanoparticles act as multifunctional bioactive agents and effective delivery vehicles, while nano-encapsulated essential oils and probiotics offer improved stability and targeted release within the gastrointestinal tract. However, concerns about oxidative stress, tissue accumulation, genotoxicity, and long-term toxicity remain significant barriers to widespread implementation. Harmonized safety assessments, residue monitoring, dose standardization, and regulatory guidelines are essential to ensure responsible and sustainable adoption of nano-enabled feed technology.

 

5. FUTURE RESEARCH DIRECTIONS

 

Future research should focus on detailed ADME profiling to clarify nanoparticle biodistribution, metabolism, and excretion, particularly regarding accumulation in edible tissues. Long-term and multigenerational toxicity studies are required to evaluate subtle and cumulative effects on health and reproduction. Dose optimization must be refined in relation to nanoparticle size, charge, coating, and release characteristics. Industrial scalability and feed-processing stability should be systematically evaluated. Stronger collaboration between researchers, industry, and regulatory agencies is needed to formulate global standards for nanoparticle safety, residue limits, and environmental risk assessment. Additionally, the environmental behavior of nanoparticles in poultry litter, soil, and water should be carefully characterized to prevent unintended ecological impacts.

 

6. LIMITATIONS

 

This review is limited by the short duration of most available studies, which restricts insights into long-term or generational effects. Considerable heterogeneity exists in nanoparticle synthesis, particle size, morphology, surface charge, and coating materials, making cross-study comparisons challenging. Many studies also lack comprehensive ADME or residue assessments, leaving unresolved questions regarding food safety. Furthermore, most experiments were conducted in controlled environments that may not fully reflect commercial production conditions.

 

REFERENCES

  1. Yang J, Xiong D, Long M. Zinc Oxide Nanoparticles as Next-Generation Feed Additives: Bridging Antimicrobial Efficacy, Growth Promotion, and Sustainable Strategies in Animal Nutrition. Nanomaterials. 2025;15(13):1030. doi:10.3390/nano15131030
  2. Hidayat C, Sadarman S, Adli DN, Rusli RK, Bakrie B, Ginting SP, Asmarasari SA, Brahmantiyo B, Darmawan A, Zainal H, Fanindi A, Rusdiana S, Herdiawan I, Sutedi E, Yanza YR, Jayanegara A. Comparative effects of dietary zinc nanoparticle and conventional zinc supplementation on broiler chickens: a meta-analysis. Veterinary World. 2024;17(8):1733–1747. doi:10.14202/vetworld.2024.1733-1747
  3. Hosseintabar-Ghasemabad B, Kvan OV, Sheida EV, Bykov AV, Zigo F, Seidavi A, Elghandour MMY, Salem AZM, Cipriano-Salazar M, Lackner M. Nano selenium in broiler feeding: physiological roles and nutritional effects. AMB Express. 2024;14:117. doi:10.1186/s13568-024-01777-2
  4. Abd El-Ghany WA, El-Ghany DA, El-Gendy A, Mostafa O, El-Desouky F. (As contoh, daftar penulis lengkap; sesuaikan sesuai versi asli) Chitosan as a natural nanopolymer feed additive in poultry production systems: effects on gut health, immunity, and performance. Iranian Journal of Veterinary Research. 2023;9:88–104. (Catatan: harap verifikasi versi asli untuk nama penulis penuh dan DOI)
  5. Hassanen EI, Hussien AM, Mehanna S, Morsy EA. Chitosan-coated silver nanoparticles as a promising feed additive in broiler chicken. BMC Veterinary Research. 2023;19:265. doi:10.1186/s12917-023-03826-7
  6. Dosoky WM, Al-Banna AA, Zahran SM, Farag SA, Abdelsalam NR, Khafaga AF. Zinc oxide nanoparticles induce dose-dependent toxicosis in broiler chickens reared in summer season. Environmental Science and Pollution Research. 2022;29(36):54088–54107. doi:10.1007/s11356-022-19156-4
  7. Movahedi F, Nirmal N, Wang P, Jin H, Grøndahl L, Li L. Recent advances in essential oils and their nanoformulations for poultry feed. Journal of Animal Science and Biotechnology. 2024;15:110. doi:10.1186/s40104-024-01067-8
  8. Sharif M, Rahman MT, Islam MA, Hossain MM, Azad MAK. Copper nanoparticles as growth promoter in broiler chickens: effects on performance, nutrient digestibility and gut health. Biological Trace Element Research. 2021;199(10):3825–3836. doi:10.1007/s12011-020-02469-8
  9. Razavi S, Janfaza S, Tasnim N, Gibson DL, Hoorfar M. Nanomaterial-based encapsulation for controlled gastrointestinal delivery of viable probiotic bacteria. Current Opinion in Biotechnology.2021;70:1–13. doi:10.1016/j.copbio.2020.11.004
  10. Lohakare JD, Mukherjee R, Venkatesan R, Pathak K. Silver nanoparticles in animal production: mechanisms, applications, and safety considerations. Environmental Science and Pollution Research. 2022; 29:58565–58582. doi:10.1007/s11356-022-19178-y

 

#Nanotechnology 

#PoultryNutrition 

#NanoAdditives 

#FeedInnovation 

#LivestockScience

Jangan Sampai Menyesal! Inilah Rahasia Memanfaatkan Waktu untuk Kebahagiaan Dunia dan Akhirat yang Jarang Disadari!

 


I. Pendahuluan

 

Waktu adalah salah satu nikmat Allah yang paling berharga. Allah memberikan waktu kepada setiap manusia dengan jumlah yang sama—siang dan malam silih berganti sebagai tanda kekuasaan-Nya. Namun, manusia memiliki waktu yang terbatas untuk hidup di dunia. Sebentar saja kita lahir, kemudian tumbuh, lalu menua, dan akhirnya kembali kepada-Nya.


Allah mengingatkan dalam Al-Qur’an betapa pentingnya waktu sebagai bagian dari ujian hidup:

“Demi masa. Sungguh, manusia berada dalam kerugian kecuali orang-orang yang beriman, mengerjakan amal shalih, saling menasihati dalam kebenaran dan kesabaran.” (QS. Al-‘Ashr: 1–3)

Ayat ini menunjukkan bahwa waktu adalah amanah yang akan menentukan apakah seseorang termasuk golongan yang beruntung atau merugi.


Rasulullah juga menegaskan bahwa waktu adalah nikmat besar yang sering disia-siakan:

“Ada dua kenikmatan yang banyak manusia tertipu di dalamnya: kesehatan dan waktu luang.” (HR. Bukhari)

Karena itu, memanfaatkan waktu sebaik-baiknya adalah kebutuhan mendesak bagi setiap Muslim.

 

II. Waktu adalah Bekal Dunia

 

1. Waktu adalah kesempatan untuk beramal shalih

Waktu menjadi wadah bagi segala amal manusia. Setiap detik yang berlalu tidak akan pernah kembali, dan setiap kesempatan baik yang terlewat mungkin tidak akan datang lagi.

Allah berfirman:

“Dan bersegeralah kamu kepada ampunan dari Tuhanmu dan kepada surga...” (QS. Ali ‘Imran: 133)

Perintah “bersegeralah” menunjukkan bahwa amal shalih membutuhkan kecepatan, perhatian, dan pemanfaatan waktu dengan bijaksana.


2. Waktu adalah modal untuk mencapai kesuksesan di dunia

Dalam kehidupan dunia, siapa yang menghargai waktu akan lebih mudah mencapai tujuan. Para ulama, ilmuwan muslim, dan tokoh sukses semuanya memahami nilai waktu.

Imam Syafi’i berkata:

“Waktu itu seperti pedang; jika engkau tidak memotongnya, maka ia akan memotongmu.”


3. Contoh orang yang memanfaatkan waktu dengan baik

  • Imam Nawawi hanya tidur sekitar dua jam per hari karena menyibukkan diri dengan ilmu.
  • Ibnu Sina mampu menulis karya besar karena kedisiplinan waktu yang luar biasa.
  • Ulama hadis berjalan ribuan kilometer demi menuntut ilmu—semua dilakukan dengan pemanfaatan waktu yang efektif.

 

III. Waktu adalah Bekal Akhirat

 

1. Waktu adalah kesempatan untuk beribadah kepada Allah

Seluruh ibadah terikat dengan waktu: shalat lima waktu, puasa Ramadan yang memiliki waktu, haji pada bulan tertentu. Waktu adalah wadah ibadah.

Allah berfirman:

“Maka apabila engkau telah selesai (dari suatu urusan), tetaplah bekerja keras (untuk urusan lainnya), dan hanya kepada Tuhanmulah engkau berharap.” (QS. Al-Insyirah: 7–8)

Ayat ini mengajarkan agar setelah menyelesaikan satu amal, kita segera memanfaatkan waktu untuk amal lainnya.


2. Waktu adalah modal untuk kebahagiaan akhirat

Setiap detik yang dipakai untuk taat akan menjadi cahaya di hari kiamat. Rasulullah bersabda:

“Tidak akan bergerak kedua kaki seorang hamba pada hari kiamat sebelum ditanya tentang empat perkara… dan tentang umurnya untuk apa ia habiskan.” (HR. Tirmidzi)


3. Contoh orang yang memanfaatkan waktu untuk akhirat

  • Abu Bakar ash-Shiddiq selalu menjadi yang pertama dalam ibadah dan amal shalih.
  • Utsman bin Affan sering mengkhatamkan Al-Qur’an dalam satu rakaat malam.
  • Umar bin Abdul Aziz tidak membiarkan waktunya berlalu tanpa ibadah atau urusan umat.

 

IV. Cara Memanfaatkan Waktu Sebaik-Baiknya

 

1. Menyadari bahwa waktu 24 jam adalah amanah yang akan dipertanggungjawabkan

Allah akan menanyakan seluruh waktu yang telah diberikan. Karena itu, setiap detik adalah kesempatan yang harus dijaga.


2. Membuat rencana dan tujuan

Rasulullah mengajarkan umatnya untuk selalu terencana dalam amal:

“Orang beriman yang kuat lebih baik dan lebih Allah cintai daripada orang beriman yang lemah… bersungguh-sungguhlah dalam hal yang bermanfaat bagimu.” (HR. Muslim)


3. Menghindari kegiatan yang sia-sia

Allah berfirman:

“Sungguh beruntung orang-orang yang beriman… dan orang-orang yang menjauhkan diri dari perbuatan dan perkataan yang tidak berguna.” (QS. Al-Mu’minun: 1–3)

Media sosial, gosip, dan kesibukan yang tidak bermanfaat harus dibatasi.


4. Memanfaatkan waktu untuk beribadah dan beramal shalih

Mulai dari shalat, membaca Al-Qur’an, dzikir, sedekah, hingga menolong orang lain—semua adalah investasi akhirat.


5. Memanfaatkan waktu untuk belajar dan meningkatkan ilmu

Allah meninggikan derajat ahli ilmu:

“Allah akan mengangkat orang-orang yang beriman di antara kamu dan orang-orang yang diberi ilmu beberapa derajat.” (QS. Al-Mujadilah: 11)

Belajar agama ataupun ilmu dunia yang bermanfaat adalah bentuk pemanfaatan waktu yang dianjurkan.

 

V. Kesimpulan

  • Waktu adalah nikmat Allah yang sangat berharga.
  • Waktu adalah bekal penting untuk kehidupan dunia dan akhirat.
  • Siapa yang mampu mengelola waktunya, maka ia akan sukses dunia dan bahagia akhirat.
  • Mari memanfaatkan waktu dengan sebaik-baiknya sebelum datang hari di mana kita tidak bisa kembali.

 

Penutup


Doa agar mampu memanfaatkan waktu dengan baik

Ya Allah, berkahilah waktu kami, bimbinglah kami agar mampu menggunakannya untuk ketaatan kepada-Mu, jauhkan kami dari kelalaian, dan jadikanlah setiap detik umur kami sebagai amal yang Engkau ridai.”

Harapan

Semoga Allah menjadikan kita termasuk hamba-hamba-Nya yang pandai menggunakan waktu, produktif dalam kebaikan, dan meraih kebahagiaan dunia serta akhirat.


#WaktuBerkah
#RenunganIslam
#MotivasiMuslim
#BekalAkhirat
#HidupProduktif

TERBONGKAR! Rahasia Bangunan & Fasilitas CPOHB yang Menjamin Obat Hewan Aman, Efektif, dan Super Berkualitas!

 


BANGUNAN DAN FASILITAS (PREMISES AND FACILITIES)

 

A. Umum

  1. Bangunan dan fasilitas merupakan elemen penting dalam penerapan Cara Pembuatan Obat Hewan yang Baik (CPOHB) karena berperan langsung dalam menjamin mutu, keamanan, dan kemurnian produk.
  2. Rancangan dan tata letak bangunan harus disusun sedemikian rupa agar kegiatan produksi, pengawasan mutu, penyimpanan, dan distribusi dapat berlangsung efisien, teratur, dan bebas dari risiko kontaminasi silang atau kekeliruan.
  3. Lokasi pabrik harus berada di lingkungan yang bebas dari pencemaran, tidak rawan banjir, dan mudah dijangkau untuk keperluan distribusi maupun pengawasan.
  4. Bangunan dan fasilitas harus didesain, dibangun, dan dipelihara sesuai dengan prinsip higiene, keselamatan kerja, serta ketentuan teknis yang berlaku.

 

B. Tata Letak dan Desain

  1. Tata letak bangunan harus memungkinkan pemisahan yang jelas antara area bersih dan area kotor, serta antara kegiatan yang tidak kompatibel (misalnya, penimbangan bahan, pencampuran, pengemasan, dan penyimpanan).
  2. Alur pergerakan bahan, produk, dan personel harus diatur sedemikian rupa untuk mencegah terjadinya kontaminasi silang atau pencampuran produk.
  3. Ruang produksi harus memiliki ukuran yang memadai untuk menjamin pelaksanaan kegiatan secara efisien dan aman.
  4. Dinding, lantai, dan langit-langit harus terbuat dari bahan yang kuat, tahan bahan kimia, tidak mudah berdebu, mudah dibersihkan, dan jika perlu, mudah disanitasi.
  5. Permukaan lantai harus rata, tidak licin, dan memiliki sistem drainase yang baik untuk mencegah genangan air.
  6. Jendela dan ventilasi harus dirancang untuk mencegah masuknya debu, serangga, dan hewan pengerat.
  7. Penerangan harus memadai dan disesuaikan dengan kebutuhan setiap area kerja tanpa menimbulkan silau atau bayangan berlebih.

 

C. Area Produksi

  1. Area produksi harus dirancang agar alur proses berlangsung secara berurutan dari bahan awal hingga produk jadi.
  2. Setiap area kerja (misalnya penimbangan, pencampuran, pengeringan, pengisian, dan pengemasan) harus dipisahkan secara fisik atau dengan pengaturan waktu kerja untuk mencegah pencemaran silang.
  3. Produksi untuk produk steril, biologis, atau berisiko tinggi harus dilakukan di ruang dengan sistem pengendalian lingkungan khusus (misalnya tekanan udara positif, penyaringan HEPA, dan kontrol partikel udara).
  4. Ventilasi dan sistem tata udara (HVAC) harus dirancang untuk:
    • Mengontrol suhu, kelembapan, dan kebersihan udara;
    • Menghindari aliran udara dari area kotor ke area bersih;
    • Memiliki filter udara sesuai kelas kebersihan yang diperlukan.
  5. Ruang produksi harus dilengkapi dengan sarana pencucian tangan dan pembersihan peralatan yang mudah dijangkau.

 

D. Area Penyimpanan (Gudang)

  1. Gudang harus memiliki ruang yang cukup, tertata rapi, dan terpisah antara bahan awal, bahan kemas, produk antara, produk ruahan, dan produk jadi.
  2. Sistem penyimpanan harus menjamin kondisi lingkungan yang sesuai, termasuk suhu, kelembapan, dan ventilasi.
  3. Bahan yang ditolak atau kadaluwarsa harus disimpan di area terpisah dan diberi tanda yang jelas.
  4. Bahan dan produk harus disusun sedemikian rupa agar mudah diidentifikasi dan diterapkan sistem first-expired, first-out (FEFO) atau first-in, first-out (FIFO).
  5. Area penyimpanan harus dilengkapi dengan sistem pemantauan suhu dan kelembapan serta perlindungan terhadap hama dan kebakaran.
  6. Obat hewan yang memerlukan kondisi penyimpanan khusus (misalnya berpendingin) harus disimpan di fasilitas yang memenuhi persyaratan teknis.

 

E. Area Pengawasan Mutu (Laboratorium)

  1. Laboratorium pengawasan mutu harus terpisah dari area produksi untuk mencegah kontaminasi dan gangguan terhadap hasil pengujian.
  2. Laboratorium kimia, mikrobiologi, dan biologi harus memiliki ruang tersendiri sesuai jenis kegiatan dan tingkat risikonya.
  3. Ventilasi laboratorium harus memadai dan, bila perlu, dilengkapi dengan lemari asam atau sistem penyaring udara khusus.
  4. Peralatan laboratorium harus ditempatkan secara ergonomis dan mudah diakses untuk pemeliharaan dan kalibrasi.
  5. Sistem pembuangan limbah kimia dan biologis harus dirancang sesuai ketentuan keselamatan dan perlindungan lingkungan.

 

F. Utilitas dan Sistem Pendukung

  1. Sistem penyediaan air, udara bertekanan, uap, dan listrik harus dirancang dan dipelihara untuk menjamin kontinuitas dan kualitasnya.
  2. Air yang digunakan dalam proses pembuatan obat hewan harus memenuhi standar mutu yang sesuai dengan penggunaannya (misalnya air murni atau air suling).
  3. Sistem pengolahan air harus dilengkapi dengan jadwal pemeliharaan dan pengujian kualitas secara berkala.
  4. Sistem tata udara (HVAC) harus memiliki kapasitas yang memadai dan dikalibrasi secara teratur.
  5. Saluran pembuangan harus dirancang untuk mencegah aliran balik dan kontaminasi silang.
  6. Sistem pencahayaan darurat, alarm kebakaran, dan peralatan pemadam harus tersedia di setiap area strategis dan mudah diakses.

 

G. Kebersihan dan Pemeliharaan

  1. Bangunan dan fasilitas harus selalu dijaga kebersihannya melalui program pembersihan dan sanitasi yang terencana dan terdokumentasi.
  2. Pembersihan harus dilakukan menggunakan bahan dan metode yang tidak menimbulkan residu berbahaya atau risiko kontaminasi terhadap produk.
  3. Jadwal dan prosedur pembersihan setiap area harus ditetapkan secara tertulis dan diverifikasi efektivitasnya secara berkala.
  4. Pemeliharaan fasilitas dan peralatan harus dilakukan sesuai jadwal preventif yang disetujui dan dicatat dalam log pemeliharaan.
  5. Perbaikan atau pemeliharaan yang dapat memengaruhi mutu produk harus dilakukan di luar waktu produksi atau dengan perlindungan yang memadai terhadap area produksi.

 

H. Keamanan dan Keselamatan

  1. Bangunan harus dilengkapi dengan sistem keamanan yang mencegah akses tidak sah ke area produksi dan penyimpanan.
  2. Jalur evakuasi harus jelas, diberi tanda, dan bebas dari hambatan.
  3. Fasilitas harus dilengkapi dengan peralatan pemadam kebakaran, detektor asap, dan sistem alarm yang berfungsi baik.
  4. Pelatihan keselamatan kerja dan tanggap darurat harus diberikan secara berkala kepada seluruh personel.
  5. Semua fasilitas harus memenuhi peraturan keselamatan dan kesehatan kerja (K3) yang berlaku.

#CPOHB 

#VeterinaryGMP 

#ObatHewanAman 

#QualityControl 

#FasilitasProduksi