Subscribe

RSS Feed (xml)

Powered By

Skin Design: Kisi Karunia
Base Code: Free Blogger Skins

Powered by Blogger

Wednesday, 12 September 2012

AIV Genetic


The first known strain of HPAI A(H5N1) (called A/chicken/Scotland/59) killed two flocks of chickens in Scotland in 1959; but that strain was very different from the current highly pathogenic strain of H5N1. The dominant strain of HPAI A(H5N1) in 2004 evolved from 1999 to 2002 creating the Z genotype. It has also been called "Asian lineage HPAI A(H5N1)".
Asian lineage HPAI A(H5N1) is divided into two antigenic clades. "Clade 1 includes human and bird isolates from Vietnam, Thailand, and Cambodia and bird isolates from Laos and Malaysia. Clade 2 viruses were first identified in bird isolates from China, Indonesia, Japan, and South Korea before spreading westward to the Middle East, Europe, and Africa. The clade 2 viruses have been primarily responsible for human H5N1 infections that have occurred during late 2005 and 2006, according to WHO. Genetic analysis has identified six subclades of clade 2, three of which have a distinct geographic distribution and have been implicated in human infections.
·         Subclade 1, Indonesia
·         Subclade 2, Europe, Middle East, and Africa (called EMA)
·         Subclade 3, China"
A 2007 study focused on the EMA subclade has shed further light on the EMA mutations. "The 36 new isolates reported here greatly expand the amount of whole-genome sequence data available from recent avian influenza (H5N1) isolates. Before our project, GenBank contained only 5 other complete genomes from Europe for the 2004–2006 period, and it contained no whole genomes from the Middle East or northern Africa. Our analysis showed several new findings. First, all European, Middle Eastern, and African samples fall into a clade that is distinct from other contemporary Asian clades, all of which share common ancestry with the original 1997 Hong Kong strain. Phylogenetic trees built on each of the 8 segments show a consistent picture of 3 lineages, as illustrated by the HA tree shown in Figure 1. Two of the clades contain exclusively Vietnamese isolates; the smaller of these, with 5 isolates, we label V1; the larger clade, with 9 isolates, is V2. The remaining 22 isolates all fall into a third, clearly distinct clade, labeled EMA, which comprises samples from Europe, the Middle East, and Africa. Trees for the other 7 segments display a similar topology, with clades V1, V2, and EMA clearly separated in each case. Analyses of all available complete influenza (H5N1) genomes and of 589 HA sequences placed the EMA clade as distinct from the major clades circulating in People's Republic of China, Indonesia, and Southeast Asia."
Terminology
H5N1 isolates are identified like this actual HPAI A(H5N1) example, A/chicken/Nakorn-Patom/Thailand/CU-K2/04(H5N1):
·         A stands for the species of influenza (A, B or C).
·         chicken is the species the isolate was found in
·         Nakorn-Patom/Thailand is the place this specific virus was isolated
·         CU-K2 identifies it from other influenza viruses isolated at the same place
·         04 represents the year 2004
·         H5 stands for the fifth of several known types of the protein hemagglutinin.
·         N1 stands for the first of several known types of the protein neuraminidase.
Other examples include: A/duck/Hong Kong/308/78(H5N3), A/avian/NY/01(H5N2), A/chicken/Mexico/31381-3/94(H5N2), and A/shoveler/Egypt/03(H5N2).
As with other avian flu viruses, H5N1 has strains called "highly pathogenic" (HP) and "low-pathogenic" (LP). Avian influenza viruses that cause HPAI are highly virulent, and mortality rates in infected flocks often approach 100%. LPAI viruses have negligible virulence, but these viruses can serve as progenitors to HPAI viruses. The current strain of H5N1 responsible for the deaths of birds across the world is an HPAI strain; all other current strains of H5N1, including a North American strain that causes no disease at all in any species, are LPAI strains. All HPAI strains identified to date have involved H5 and H7 subtypes. The distinction concerns pathogenicity in poultry, not humans. Normally a highly pathogenic avian virus is not highly pathogenic to either humans or non-poultry birds. This current deadly strain of H5N1 is unusual in being deadly to so many species, including some, like domestic cats, never previously susceptible to any influenza virus.
Genetic structure and related subtypes
H5N1 is a subtype of the species ''Influenza A virus'' of the ''Influenzavirus A'' genus of the ''Orthomyxoviridae'' family. Like all other influenza A subtypes, the H5N1 subtype is an RNA virus. It has a segmented genome of eight negative sense, single-strands of RNA, abbreviated as PB2, PB1, PA, HA, NP, NA, MP and NS.
HA codes for hemagglutinin, an antigenic glycoprotein found on the surface of the influenza viruses and is responsible for binding the virus to the cell that is being infected. NA codes for neuraminidase, an antigenic glycosylated enzyme found on the surface of the influenza viruses. It facilitates the release of progeny viruses from infected cells.
The hemagglutinin (HA) and neuraminidase (NA) RNA strands specify the structure of proteins that are most medically relevant as targets for antiviral drugs and antibodies. HA and NA are also used as the basis for the naming of the different subtypes of influenza A viruses. This is where the ''H'' and ''N'' come from in ''H5N1''.
Influenza A viruses are significant for their potential for disease and death in humans and other animals. Influenza A virus subtypes that have been confirmed in humans, in order of the number of known human pandemic deaths that they have caused, include:
·         H1N1, which caused the 1918 flu pandemic ("Spanish flu") and currently is causing seasonal human flu and the 2009 flu pandemic ("swine flu")
·         H2N2, which caused "Asian flu"
·         H3N2, which caused "Hong Kong flu" and currently causes seasonal human flu
·         H5N1, ("bird flu"), which is noted for having a strain (Asian-linage HPAI H5N1) that kills over half the humans it infects, infecting and killing species that were never known to suffer from influenza viruses before (e.g. cats), being unable to be stopped by culling all involved poultry - some think due to being endemic in wild birds, and causing billions of dollars to be spent in flu pandemic preparation and preventiveness
·         H7N7, which has unusual zoonotic potential and killed one person
·         H1N2, which is currently endemic in humans and pigs and causes seasonal human flu
·         H9N2, which has infected three people
·         H7N2, which has infected two people
·         H7N3, which has infected two people
·         H10N7, which has infected two people
Low pathogenic H5N1
Low pathogenic avian influenza H5N1 (LPAI H5N1) also called "North American" H5N1 commonly occurs in wild birds. In most cases, it causes minor sickness or no noticeable signs of disease in birds. It is not known to affect humans at all. The only concern about it is that it is possible for it to be transmitted to poultry and in poultry mutate into a highly pathogenic strain.
·         1975 – LPAI H5N1 was detected in a wild mallard duck and a wild blue goose in Wisconsin.
·         1981 and 1985 – LPAI H5N1 was detected in ducks by the University of Minnesota conducting a sampling procedure in which sentinel ducks were monitored in cages placed in the wild for a short period of time.
·         1983 – LPAI H5N1 was detected in ring-billed gulls in Pennsylvania.
·         1986 - LPAI H5N1 was detected in a wild mallard duck in Ohio.
·         2005 - LPAI H5N1 was detected in ducks in Manitoba, Canada.
·         2008 - LPAI H5N1 was detected in ducks in New Zealand.
·         2009 - LPAI H5N1 was detected in commercial poultry in British Columbia.
"In the past, there was no requirement for reporting or tracking LPAI H5 or H7 detections in wild birds so states and universities tested wild bird samples independently of USDA. Because of this, the above list of previous detections might not be all inclusive of past LPAI H5N1 detections. However, the World Organization for Animal Health (OIE) recently changed its requirement of reporting detections of avian influenza. Effective in 2006, all confirmed LPAI H5 and H7 AI subtypes must be reported to the OIE because of their potential to mutate into highly pathogenic strains. Therefore, USDA now tracks these detections in wild birds, backyard flocks, commercial flocks and live bird markets."
High mutation rate
Influenza viruses have a relatively high mutation rate that is characteristic of RNA viruses. The segmentation of its genome facilitates genetic recombination by segment reassortment in hosts infected with two different influenza viruses at the same time. This doesn't mean that one amino acid substitution can cause a pandemic, but it does mean that one amino acid substitution can cause an avian flu virus that is not pathogenic in humans to become pathogenic in humans.
Influenza A virus subtype H3N2 is endemic in pigs in China, and has been detected in pigs in Vietnam, increasing fears of the emergence of new variant strains. The dominant strain of annual flu virus in January 2006 was H3N2, which is now resistant to the standard antiviral drugs amantadine and rimantadine. The possibility of H5N1 and H3N2 exchanging genes through reassortment is a major concern. If a reassortment in H5N1 occurs, it might remain an H5N1 subtype, or it could shift subtypes, as H2N2 did when it evolved into the Hong Kong Flu strain of H3N2.
Both the H2N2 and H3N2 pandemic strains contained avian influenza virus RNA segments. "While the pandemic human influenza viruses of 1957 (H2N2) and 1968 (H3N2) clearly arose through reassortment between human and avian viruses, the influenza virus causing the 'Spanish flu' in 1918 appears to be entirely derived from an avian source".
Sumber : http://www.news-medical.net/

Friday, 31 August 2012

Teknologi Peternakan Wagyu di Jepang

Jepang adalah salah satu negara yang masyarakatnya memiliki kualitas hidup yang tinggi. Tingkat konsumsi protein hewani sudah sangat baik, tingkat kesadaran pemerintah dan rakyat Jepang terhadap modal memajukan bangsa adalah dengan mencerdaskan SDM juga sangat baik, peningkatan SDM tidak bisa lepas dari asupan pangan asal ternak yang memiliki korelasi positif terhadap tingkat intelegensi SDM.

 

Kesadaran ini juga didukung dengan langkah nyata dalam upaya penyediaan pangan asal ternak yang cukup dan berkualitas. Namun karena keterbatasan lahan maka produksi daging dan susu dalam negeri belum mampu swasembada sehingga Jepang pun melakukan import dari negara lain. Produksi daging sapi dalam negeri hanya mampu memenuhi 42% dari kebutuhan, dan produksi daging tersebut 43%nya berasal dari daging sapi wagyu.

 

Jenis sapi wagyu memiliki kelas terbaik dan mendominasi konsusmi daging sapi di negeri ini. Hal ini lebih disebabkan karena jenis sapi ini memiliki kualitas perlemakan / marbling yang sangat baik (hingga skala 12), dan arah konsusmi masyarakat sudah mengarah kepada kenikmatan dan kesehatan pangan. Sehingga arah program pengembangan peternakan di Jepang khususnya sapi potong pun sudah berorientasi kearah kualitas, bukan hanya kuantitas.

 

Pada dasarnya perbedaan sapi dari Negara Amerika atau Australia dengan sapi wagyu ini adalah dari cita rasa, sapi barat mengandalakan cita rasa daging sebagai otot, tetapi wagyu menyuguhkan kehalusan citarasa yang lebih abstrak, dituangkan lewat metamorfosa lemak ke minyak. Maka, dipilihlah sapi yang paling empuk dagingnya dan kurang berkembang ototnya tetapi berpotensi besar dikembangkan lemaknya. Dan perlemakan yang unggul ini lebih dominan disebabkan faktor genetik, terutama pada wagyu berbulu hitam (Japanese black). Selain itu daging sapi wagyu ini memiliki kadar lemak baik yang lebih tinggi hingga mencapai 52%.

 

Jepang memiliki 4 jenis sapi potong yang biasa disebut Wagyu yaitu Japanese black, Japanese brown, Japanese shorthorn dan Japanese polled. Keempat jenis sapi wagyu tersebut memilki keunggulan dan ciri khas masing-masing. Japanese black merupakan produsen "marbled beef” yang paling bagus, dengan penampilan fisik mencapai tinggi 147 cm dengan berat 720 kg untuk jantan dan tinggi 130 cm dengan BB 450 kg untuk betina.

 

Berbeda halnya dengan sapi Japanese brown memilki karakter yang lebih tahan terhadap suhu tinggi dan adaptasi terhadap pakan kasarpun tinggi, tetapi kualitas daging yang dihasil rendah dibanding Javanese black, dan ferformance fisiknya mencapai tinggi 153 dengan BB 1 ton untuk jantan dan betinanya memiliki tinggi 134 cm dengan BB 600 kg.

 

Sapi Japanese shorthorn memiliki karakter kualitas daging yang memiliki serat tebal dan kualitas perlemakan yang rendah jika dibandingkan dengan sapi Javanese black, tetapi kelebihannya mampu memanfaatkan pakan kasar secara lebih efisien dan mampu beradapatasi pada iklim di daerah bagian utara Jepang serta kemampuan adaptasi terhadap metoda pengembalaan di padangan (performan jantan : 145 cm tinggi dan 1 ton BB, performance betina tinggi : 130 cm dan 580 kg BB.

 

Lain lagi halnya dengan sapi jenis Japanese polled merupakan sapi yang memiliki karakter lebih kuat dibanding Japanese black namun kualitas daging dan perlemakan yang rendah, adapun penampilan fisik untuk jantan mencapai tinggi 137 cm dengan BB 800 kg sedangkan sapi betina tinggi sekitar 122 cm dan BB 450 kg.

 

Persentase jenis sapi penyuplai daging di Jepang, Wagyu menempati urutan teratas sebanyak 43%, nomor dua dairy breed sebanyak 31%, nomor tiga cross breed sebanyak 24%, sedangkan yang lain hanya 2%.

 

Harga karkas per kg di Jepang, karkas Wagyu menempati urutan teratas (termahal) yakni 1.500 yen per kg, nomor dua Cross breed yakni 1.100 yen per kg, sedangkan yang termurah dairy breed dengan harga 600 yen per kg.

 

Peningkatan Produksi Ternak

 

Seperti dijelaskan diatas, Jepang memiliki sumber daya lahan yang terbatas dibanding banyak negara lainnya, dengan luasan sekitar 378 ribu km2 (Luas Indonesia 205% dari luasan Jepang). Populasi penduduk mencapai 127 juta dan terletak pada zona daerah beriklim sedang dan dingin serta merupakan daerah pegunungan, sehingga menjadi titik kritis dalam upaya untuk memajukan usaha pembibitan ternak dan meningkatkan kapasitas dalam pengembangan teknologi.

 

Pengembangan usaha pembibitan ternak yang dilakukan melalui peningkatan kemampuan genetik ternak, sehingga dengan harapan dapat menghasilkan produk yang berkualitas tinggi dengan yang rendah. Inilah yang menjadi arah dalam pengembangan dunia peternakan di Jepang dewasa ini. Sehingga program peningkatan produktivitas ternak sangatlah penting. Pengertian peningkatan produktivitas ternak yaitu dapat meningkatkan pendapatan peternak dan menyuplai produk peternakan dengan stabil dan aman untuk masyarakat melalui peningkatan kualitas dan kuantitas produk.

 

1. Peningkatan Kualitas

a)Perbandingan daging sapi yang berkualitas tinggi: 39.4% (1995) menjadi 48.1 % (2007)

b)Fat (%) : 3,44 (1975) menjadi 3,99 (205)

c)SNF(%): 8,18 (1975) menjadi 8,79 (2005)

 

Peningkatan kualitas ini memiliki dampak pada peternak yaitu dapat meningkatkan nilai tambah pada produk peternakan, dan dapat meningkatkan keuntungan pada usaha peternakan. Sedangkan pada tingkat konsumen dapat mengkonsumsi produk peternakan yang disesuaikan dengan kebutuhan.

 

2. Peningkatan kuantitas

a)Penambahan berat badan/ hari untuk sapi potong 0,60 kg (1975) menjadi 0,73 kg (2005)

b)Produksi susu/ekor untuk sapi perah dari 4,5 kg (1975) menjadi 7,9 kg (2005)

 

Tentunya peningkatan kuantitas inipun memberi keuntungan bagi peternak yaitu dapat menurunkan biaya produksi pada produk peternakan dan perbaikan pada usaha peternakan cadangkan bagi konsumen tentunya memberi jaminan suplai pada produk peternakan secara stabil dan dapat membelinya dengan harga yang rasional.

 

Teknologi Pakan

 

Selain faktor genetik yang merupakan hasil dari proses yang begitu panjang, tentunya keunggulan genetik tersebut tidak akan tampil secara optimal ketika pakan sebagai faktor dominan diabaikan. Bahkan di Jepang pengelolaan peternakan dilakukan secara modern meskipun di tingkat peternak kecil, sangat familiar dengan teknologi mekanisasi.

 

Pemanfaat lahan di Jepang terdiri dari 66% hutan, 12,6% lahan pertanian, 4,9% lahan untuk bangunan, 3,6% wilayah air, 3,5% jalan dan 9% Iain2. Sedangkah pembagian lahan pertanian terdiri dari 38,1% pady field, 21,1% forage crops, 13% sayuran, gandum-ganduman 6,2%, buah 6% dan Iain2 15,5%.

 

Dengan pemanfaatan lahan sekitar 21% (901.500 ha) untuk tanaman pakan, dapat memproduksi TDN sebanyak 4.305 ton sedangkan kebutuhan mencapai 5.546 ton sehingga mampu memenuhi hingga 78% dari kebutuhan roughage berbeda halnya dengan bahan-bahan campuran konsentrat yang hampir 90% dipenuhi oleh import.

 

Terdapat tiga sistem pemeliharaan yang banyak ditemui di Negara Jepang

 

1. Dua puluh empat jam sapi berada di pengembalaan, dengan system rotasi paddock.

Teduhan hanya pohon secara alami. Bahkan banyak peternak yang tidak menambahkan konsentrat pada ternaknya, namun mineral block disebarkan di pengembalaan guna mengantisipasi rendahnya unsur mikro pada rumput padangan. Sistem inipun terbagi menjadi 2 metoda yang banyak diterapkan oleh peternak di Jepang, yaitu :

a)  Sistem rotasi dengan rata-rata luasan pengembalaan hanya berkisar 0,5 ha (grazing 3 bulan dan housing 5-6 bulan)

b)  Sistem tradisional continuous grazing seluas 2 ha ditempatkan beberapa ekor sapi berdasarkan daya tampung padang pengembalaannya (grazing 1 bulan dan housing 7-8 bulan).

 

Biaya produksi untuk menghasilkan calf pada metoda tradisional lebih tinggi dibanding dengan metoda rotasi, sehingga sekarang banyak peternak beralih pada system rotasi yang memanfaatkan solar electrical fence.

 

2. Dua puluh empat jam sapi berada di kandang, pada sistem ini tentunya kualitas permablingan akan lebih baik.

Pada sistem ini pemberian pakan biasanya terdiri dari dua cara :

a)  Menggunakan complete feed, yang merupakan campuran dari silase, hay dan konsentrat, bahkan banyak peternak yang memfermentasi kembali complete feednya melalui penerapan teknologi silase.

b)  Pemberian hay / silase terpisah dengan konsentrat. Namun dari kedua cara tersebut mineral blok senantiasa tersedia dikandang.

 

3. Sistem angon, kandang berada disisi padang pengembalaan, jika merasa kepanasan/kedinginan sapi dengan sendirinya kembali ke kandang.

 

SUMBER :

Hesti Natalia, Perkembangan Teknologi Peternakan di negeri Sakura. Infofeed Volume 2 No. 2 Juli 21012. Hal. 28-29.